SASA Math
  • Introduction
  • Recent Articles
  • Topic Index
  • Tag Cloud
  • Links
Category:

Calculus

Calculus

발산하는 극한 증명 예

by I Seul Bee September 1, 2024
written by I Seul Bee

미적분학을 공부하다 보면 수렴하는 극한을 증명하는 예를 자주 볼 수 있다. 반면에 발산하는 극한을 증명하는 예는 상대적으로 자주 볼 수 없다. 이 포스트에서는 발산하는 극한을 증명하는 예를 살펴보자. 이 포스트에서 말하는 ‘함수’는 모두 공역이 실수 집합인 함수를 나타낸다. 무한대로 발산하는 극한 함수 \(f\)가 점 \(c\)의 근처에서 정의되었다고 하자. (엄밀히 말하면, 점 \(c\)가 \(f\)의 정의역의 집적점이라고 하자.) 만약 임의의 양수 \(M\)에 대하여, 양수 \(\delta\)가 존재하여, …

Continue Reading
September 1, 2024 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

이란의 전통 월별 상환금 계산 방법

by I Seul Bee November 22, 2023
written by I Seul Bee

이란의 전통 월별 상환금 계산 방법 글쓴이: 페이만 밀란파(Peyman Milanfar) 옮긴이: 이슬비(designeralice@daum.net) 최근에 나는 대출 금액의 월별 상환금을 추정하는 매우 빠르고 효과적인 방법을 배웠다. 이 방법은 아버지께서 가르쳐 주셨는데, 아버지께서는 19세기 이란에서 무역을 하셨던 할아버지로부터 배우셨다고 한다. 이 공식이 처음 만들어진 기원은 미스테리이지만, 이 방법은 이란을 포함한 많은 지역에서 사용되고 있다. 아버지께서 알려주신 공식은 다음과 같다. \[(\text{월별 상환금}) = \frac{1}{(\text{월수})} [(\text{원금}) + (\text{이자})].\] 여기서 …

Continue Reading
November 22, 2023 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

테일러 다항식 근사를 사용한 무한급수 수렴 판정

by I Seul Bee November 12, 2023
written by I Seul Bee

무한급수 수렴판정을 하다 보면 삼각함수를 다루기 어려운 경우가 있다. 다음 무한급수를 살펴보자. \[\sum_{n=5}^{\infty} \left( \frac{1}{n} – \sin \frac{n+1}{n^2 – 5n + 4} \right ). \tag{1}\] \(n \rightarrow 0\)일 때 사인 함수 안에 있는 분수식이 \(0\)에 수렴하고, \(x=0\) 근처에서 \(\sin x\)는 \(x\)와 비슷하게 움직이므로, 위 무한급수에서 사인을 그냥 없애고 판정해도 될 것 같다. 즉 위 무한급수의 수렴 여부는 \[\sum_{n=5}^{\infty} \left( \frac{1}{n} – \frac{n+1}{n^2 -5n +4} …

Continue Reading
November 12, 2023 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

이상적분의 정의와 수렴 판정법

by I Seul Bee May 1, 2023
written by I Seul Bee

이 글에서는 변수가 하나인 실숫값 함수의 이상적분을 정의하고, 이상적분의 수렴 판정법을 살펴본다. 또한 이상적분을 활용하는 예로서 감마 함수를 살펴본다. 내용 순서 들어가기 길이가 무한인 구간에서 정의되는 이상적분 유계가 아닌 함수의 이상적분 이상적분의 수렴 판정법 (적분 구간의 길이가 무한인 경우) 이상적분의 수렴 판정법 (함수가 유계가 아닌 경우) 이상적분을 활용하는 예: 감마 함수 맺음말 미리 알아야 할 내용 정적분 (관련 글) 미적분의 기본정리 (관련 글) 들어가기 …

Continue Reading
May 1, 2023 1 comment
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
CalculusLinear Algebra

라그랑주의 방법을 이용하여 타원의 축의 길이 구하기

by I Seul Bee June 16, 2021
written by I Seul Bee

다음과 같은 타원의 방정식을 생각해 봅시다. \[2x^2 – 4xy + 5y^2 = 36\tag{1}\] 선형대수학에서 공부한 이차형식의 성질을 이용하면 좌변을 변형하여 타원의 장축과 단축의 길이를 구할 수 있습니다. 하지만 오늘은 라그랑주의 방법(method of Lagrange’s multiplier)을 이용하여 이 타원의 장축과 단축의 길이를 구해보겠습니다. 타원의 중심이 좌표평면의 원점이므로, 타원 위의 점 중에서 원점으로부터 가장 멀리 있는 점까지의 거리와 가장 가까이 있는 점까지의 거리를 찾으면 됩니다. 즉 타원 …

Continue Reading
June 16, 2021 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

Multiple Integrals and Vector Fields for 5 Days

by I Seul Bee November 18, 2020
written by I Seul Bee

This is a set of problems with which you can take exercise on multiple integrals and integrals of vector fields. Day 1. The problems for the first day are related to chapter 15. In problem 1-5, evaluate the integrals. \[\int_1^2 \int_{-1}^1 \frac{x}{y^2} \,dx\,dy.\] \[\int_0^{\ln 2} \int_0 ^{\pi/2} e^x\,\cos y \,dy\,dx.\] \[\int_0^2 \int_{y/2}^1 e^{x^2} \,dx\,dy .\] \[\int_0^\pi \int_0^\pi \int_0^\pi \cos(x+y+z) dx\,dy\,dz.\] \[\int_{-1}^1 \int_0^{\sqrt{1-y^2}}\int_0^x (x^2 + …

Continue Reading
November 18, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

라그랑주 승수법을 이용한 코시-슈바르츠 부등식 증명

by I Seul Bee October 4, 2020
written by I Seul Bee

\(n\)이 \(2\) 이상인 자연수이고 \(a_1 ,\) \(\cdots ,\) \(a_n ,\) \(b_1 ,\) \(\cdots,\) \(b_n\)이 모두 실수일 때 다음이 성립한다. \[\left( \sum_{i=1}^n a_i b_i \right)^2 \le \left( \sum_{i=1}^n a_i ^2\right) \left(\sum_{i=1}^n b_i ^2 \right).\tag{1}\] 이 부등식을 코시-슈바르츠 부등식(Cauchy-Schwarz inequality)이라고 부른다. 라그랑주 승수법(method of Lagrange’s multiplier)을 이용하여 이 부등식을 증명해 보자. 증명을 마칠 때까지 첨수 \(i\)와 \(j\)는 \(n\) 이하의 자연수를 나타내는 것으로 약속한다. 증명 과정은 두 …

Continue Reading
October 4, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
CalculusMathematical Analysis

연속함수의 적분 가능성 (이중적분)

by I Seul Bee June 15, 2020
written by I Seul Bee

이 포스트에서는 직사각형 영역에서 정의된 함수의 이중적분을 정의하고, 연속함수의 적분 가능성을 증명합니다. 리만 적분의 엄밀한 정의가 기억나지 않는다면 일변수 함수의 리만 적분을 소개하는 이전 글(바로가기)을 먼저 읽어 보기 바랍니다. 리만 적분의 정의 먼저 이중적분을 정의하자. \(I = [a,\,b]\)와 \(J = [c,\,d]\)가 길이가 양수인 구간이고 \(R = I \times J\)라고 하자. 그리고 \[\begin{gather} P_I = \left\{ x_0 ,\, x_1 ,\, x_2 ,\, \cdots ,\, x_m …

Continue Reading
June 15, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

미적분학 II 자기주도적 학습 과제 (후반부)

by I Seul Bee June 1, 2020
written by I Seul Bee

‘자기주도적 학습 과제’는 스스로 공부하는 학생들에게 학습의 방향을 안내해주기 위한 문제입니다. 매주 5문제가 제공됩니다. Thomas Calculus 관련 단원을 공부한 후 충분히 생각하면서 문제를 풀어보세요. 여러분의 실력 향상에 도움이 될 것입니다. **** **** **** 9주차 9주차 문제의 관련 단원은 2.5, 10.2, 14.1절입니다. 다음 문제에서 \(D\)는 \(\mathbb{R}^2\)의 부분집합을 나타냅니다. \(D\)가 닫힌집합이라고 합시다. 또한 수열 \(\left\{ \textbf{x}_n \right\}\)의 모든 점이 \(D\)에 속한다고 합시다. 만약 \(\left\{ \textbf{x}_n \right\}\)이 …

Continue Reading
June 1, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Calculus

사면체의 겉넓이가 최소가 되도록 하는 꼭짓점의 위치

by I Seul Bee May 28, 2020
written by I Seul Bee

라그랑주의 방법을 이용하여 도형과 관련된 문제를 해결하는 예를 살펴 보자. 문제. \(\mathbb{R}^3\)에 놓은 사면체 \(\mathrm{P-ABC}\)를 생각하자. 삼각형 \(\mathrm{ABC}\)가 \(xy\) 평면에 고정되어 있고, 점 \(\mathrm{P}\)는 \(z > 0\)인 위쪽 반공간에 놓여 있으며 사면체 \(\mathrm{P-ABC}\)의 부피가 일정하다고 하자. 그리고 점 \(\mathrm{P}\)로부터 \(xy\) 평면에 내린 수선의 발을 \(\mathrm{Q}\)라 하자. 이때 사면체 \(\mathrm{P-ABC}\)의 겉넓이가 최소가 되도록 하는 점 \(\mathrm{Q}\)의 위치를 구하시오. 풀이. 점 \(\mathrm{Q}\)가 삼각형 \(\mathrm{ABC}\)의 내부에 있는 …

Continue Reading
May 28, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
  • 1
  • 2
  • 3
  • …
  • 5

Search

Categories

  • Abstract Algebra (3)
  • Analytic Geometry (1)
  • Applied Activity (1)
  • Basic Mathematics (6)
  • Calculus (49)
  • Classical Geometry (1)
  • Complex Analysis (2)
  • Differential Equation (1)
  • Differential Geometry (1)
  • Functional Analysis (2)
  • General Topology (2)
  • Linear Algebra (32)
  • Mathematical Analysis (3)
  • Probability & Statistics (1)
  • Real Analysis (1)
  • Sets and Logic (3)

Statistics

  • 25
  • 145
  • 1,720
  • 7,239
  • 267,170

Sejong Academy of Science and Arts

  • Introduction
  • Recent Articles
  • Topic Index
  • Tag Cloud
  • Links