\(\mathbb{R}^3\)에서의 유향선적분은 1형식을 이용하여 \[\int_C \mathbb{F} \cdot \mathbb{T} \,dx = \int_C P \,dx + Q\,dy + R\,dz\] 의 꼴로 나타낼 수 있다. 여기서 \(C\)는 \(\mathbb{R}^3\)에 포함되는 매끄러운 곡선이다. 즉 \(C\)는 \(\mathbb{R}^3\)에 포함되는 1차원 집합이다. 한편 \(\mathbb{R}^3\)에서의 유향면적분은 2형식을 이용하여 \[\iint_S \mathbb{F} \cdot \mathbb{n} \,d\sigma = \iint_S P\,dy\,dz + Q\,dz\,dx + R\,dx\,dy\] 의 꼴로 나타낼 수 있다. 여기서 \(S\)는 \(\mathbb{R}^3\)에 포함되는 매끄러운 곡면이다. 즉 \(S\)는 …
I Seul Bee
I Seul Bee
I Seul Bee is a mathematics teacher in Sejong Academy of Science and Arts. I Seul Bee is teaching middle and high school students, and undergraduate students. I Seul Bee has written several books on mathematics -- analysis, set theory, etc.
이 포스팅에서는 측도론을 기반으로 확률과 관련된 개념을 정의하고 확률변수의 독립성을 살펴본다. 확률공간과 확률측도 \(\varOmega\)가 집합이고 \(\mathcal{F}\)가 \(\varOmega\)의 부분집합들의 \(\sigma\)-대수이며 \(P\)가 \(\mathcal{F}\) 위에서의 측도이고 \(P(\varOmega ) = 1\)일 때, \((\varOmega ,\, \mathcal{F} ,\, P)\)를 확률공간(probability space)이라고 부른다. 여기서 \(P\)를 확률측도(probability measure) 또는 간단히 확률이라고 부르며, \(\mathcal{F}\)의 원소를 사건(event)이라고 부른다. \(B\)가 사건이고 \(P(B) > 0\)이라고 하자. 이때 \[ P(A|B) := \frac{P(A\cap B)}{P(B)}\] 를 ‘\(B\)가 주어졌을 때 …
힐베르트의 영점 정리(Nullstellensatz)는 준동형사상의 확장 정리를 유한생성환에 적용한 정리이다. 먼저 몇 개의 보조정리를 도입한 후 영점 정리를 증명하자. 정리 1. \(k\)가 체이고 \(k[x] = k[x_1 ,\, \cdots ,\, x_n ]\)이 \(k\) 위에서의 유한생성환이라고 하자. 또한 \(\varphi : k \,\to\,L\)이 \(k\)로부터 대수적으로 닫힌 체 \(L\)로의 매장함수라고 하자. 그러면 \(\varphi\)를 확장하여 \(k[x]\)로부터 \(L\)로의 일대일인 준동형사상을 만들 수 있다. 증명 \(\mathfrak{M}\)이 \(k\)의 극대아이디얼이고, \(\sigma\)가 \(k[x]\)로부터 \(k[x]/\mathfrak{M}\)으로의 표준준동형사상이라고 …
하르토크의 확장 정리(Hartog’s extension theorem)는 \(X\)가 \(\mathbb{C}^n\)의 열린부분집합이고 \(n\ge 2\)이며 \(K\subseteq X\)가 컴팩트이고 \(X\setminus K\)가 연결집합일 때 \(X\setminus K\)에서 해석적인 함수는 \(X\)에서 해석적인 함수로 유일하게 확장될 수 있다는 정리이다. 먼저 단순한 경우부터 살펴보자. 집합 \(D\subseteq \mathbb{C}^n\)에 대하여, \(\mathbb{T}^n\)이 \(D\)에 대하여 성분별 연산으로 작용하면 \(D\)를 다중고리라고 부른다. 이때 만약 \(D\)가 영역(열린 연결집합)이면 \(D\)를 라인하르트 영역(Reinhardt domain)이라고 부른다. 거듭제곱급수의 수렴영역은 라인하르츠 영역이다. 그러나 \(f : D …
In this post we will study integration in abstract spaces. Let \(E\) be a normed linear space and \(K\) the closed interval \([a,\,b]\) of the real number line. We consider an operator \(x = x(t),\) which need not be linear and maps \(K\) into \(E.\) In the following, we will call such an operator an abstract function on the interval \([a,\,b].\) For these functions, …
In this post we will study differentiation in abstract spaces. Definition of Derivatives Let \(E\) be a normed linear space and \(K\) the closed interval \([0,\,1]\) of the real number line. We consider an operator \(x = x(t),\) which need not be linear and maps \(K\) into \(E.\) In the following, we will call such an operator an abstract function on the interval \([0,\,1].\) …
바이어슈트라스의 근사 정리에 의하면 \(f\)가 닫힌 구간 \([a,\,b]\)에서 정의된 연속함수일 때 \([a,\,b]\) 위에서 \(f\)에 균등수렴하는 다항함수열이 존재한다. 여기서는 더 일반적인 경우를 살펴보자. 정의 1. (대수; algebra) \(X\)가 거리공간이고 \(C(X)\)가 정의역이 \(X\)인 연속 실함수들의 모임이라고 하자. \(\mathcal{A}\)가 \(C(X)\)의 부분집합이고 공집합이 아니며 두 조건 \(f,\,g\in\mathcal{A}\)일 때 \(f+g \in \mathcal{A},\) \(fg\in\mathcal{A}\) \(f\in\mathcal{A},\) \(c\in\mathbb{R}\)일 때 \(cf\in\mathcal{A}\) 를 모두 만족시키면 \(\mathcal{A}\)를 \(C(X)\)의 실함수 대수(real function algebra) 또는 간단히 대수(algebra)라고 …
가산집합과 비가산집합은 원소의 개수에 따라 집합을 분류한 것이다. 해석학과 위상수학에서는 원소의 개수뿐만 아니라 원소의 분포 형태까지 고려하여 집합을 분류하는데 그러한 분류법 중 하나가 집합의 범주이다. 정의 1. \(X\)가 위상공간이고 \(E\subseteq X\)라고 하자. 만약 \(\left(\overline{E}\right)^o = \varnothing\)이면 \(E\)는 \(X\)의 어느 곳에서도 조밀하지 않다(nowhere dense)고 말한다. 보기 1. \(\mathbb{R}\)가 보통위상공간이라고 하자. 이때 \(\mathbb{N}\)은 \(\mathbb{R}\)의 어느 곳에서도 조밀하지 않다. 보기 2. \(\mathbb{Z}\)가 보통위상공간이라고 하자. 이때 \[\left(\overline{\mathbb{N}}\right)^o = …
이 포스트에서는 \(\mathcal{L}^1\) 노름을 기준으로 했을 때 계단함수를 이용하여 가측함수에 근사시키는 방법과 연속함수를 이용하여 \(\mathcal{L}^1\)에 속하는 함수에 근사키는 방법을 살펴보고, 그 응용으로서 리만-르베그의 보조정리를 살펴본다. 정리 1. (계단함수를 이용한 가측함수의 근사) \(f\)가 \([a,\,b]\)에서 유계인 가측함수라고 하자. 그러면 임의의 \(\epsilon > 0\)에 대하여 계단함수 \(h\)가 존재하여 \[\int_a^b |f-h| \, dm < \epsilon\] 을 만족시킨다. 증명 먼저 \(f \ge 0\)인 경우를 증명하자. 그러면 르베그 적분의 정의에 ...