예제 1. 함수 \(f(x,\,y,\,z)\)가 모든 점에서 미분 가능하고 \[f(x,\,y,\,z)=0 \tag{1.1}\] 을 만족시킬 때 \[\left( \frac{\partial x}{\partial g} \right)_z \left( \frac{\partial y}{\partial z}\right)_x \left( \frac{\partial z}{\partial x}\right)_y =-1\tag{1.2}\] 임을 보이시오. (Thomas’ Calculus 13ed 14.10. Exercise 9.) 풀이. 먼저 \(y,\) \(z\)를 독립변수로 두고 (1.1)의 양변을 \(y\)에 관하여 미분하면 다음과 같다. \[\begin{align} &\frac{\partial f}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial …
Tag:
Partial Derivative
In this post we will study differentiation in abstract spaces. Definition of Derivatives Let \(E\) be a normed linear space and \(K\) the closed interval \([0,\,1]\) of the real number line. We consider an operator \(x = x(t),\) which need not be linear and maps \(K\) into \(E.\) In the following, we will call such an operator an abstract function on the interval \([0,\,1].\) …