SASA Math
  • Introduction
  • Recent Articles
  • Topic Index
  • Tag Cloud
  • Links
Tag:

Linear Algebra

Linear Algebra

벡터공간의 차원은 잘 정의된다

by YC Lee April 19, 2023
written by YC Lee

이 글은 벡터공간의 차원이, 그 벡터공간의 기저의 기수(cardinal number)로서 잘 정의됨을 살펴보는 글이다. 유한집합으로 생성되는 벡터공간의 차원이 잘 정의된다는 것은 보통의 선형대수학 교재에 아주 잘 소개되어 있으므로 여기서는 생략하고, 이 글에서는 유한집합으로 생성되지 않는 벡터공간, 즉 무한차원벡터공간의 차원이 잘 정의되는 것을 살펴본다. 이 글은 참고문헌 [1]의 제9장 2절의 내용을 바탕으로 작성하였다. Invariance of Dimensionality 체 \(\mathbb{F}\) 위의 벡터공간 \(V\)가 주어졌을 때, (선택공리를 가정했을 때) …

Continue Reading
April 19, 2023 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Classical GeometryLinear Algebra

행렬식과 체적

by YC Lee June 2, 2021
written by YC Lee

이 글은 현재는 절판된 Serge Lang의 선형대수 교재 제2판([1], VII, §6)의 내용을 토대로 쓴 것이다. 퍼가지 마시라. 이 글에서는 행렬식을 한 도형의 체적으로 이해하는 이야기를 소개한다. 먼저 2-차원의 경우를 논할텐데, ‘체적(volume)’이라는 용어를 2-차원 도형의 넓이를 일컬을 때에도 그냥 사용하고자 한다. 또한 ‘\(\operatorname{Vol}\)’와 같은 기호를 이용하여 넓이를 나타내기도 할 것이다. 물론 이 기호를 일반적인 고차원 도형의 체적을 나타내는 기호로도 쓸 것이다. 먼저 두 벡터 \(v, …

Continue Reading
June 2, 2021 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

벡터의 직교분해를 이용한 코시-슈바르츠 부등식 증명

by I Seul Bee October 5, 2020
written by I Seul Bee

벡터의 직교분해를 이용하여 코시-슈바르츠 부등식을 증명해 보자. \(V\)가 벡터공간이고 \(\mathbf{u},\,\mathbf{v}\in V\)라고 하자. 만약 \(\mathbf{u}\)와 \(\mathbf{v}\) 중 하나 이상이 \(\mathbf{0}\)이면 자명하게 \[ \lvert \langle \mathbf{u} ,\, \mathbf{v} \rangle \rvert \le \lVert \mathbf{u} \rVert \lVert \mathbf{v} \rVert \tag{1}\] 를 얻는다. 그러므로 \(\mathbf{u}\)와 \(\mathbf{v}\) 중 어느것도 \(\mathbf{0}\)이 아니라고 가정하자. 그리고 \[\mathbf{w} = \mathbf{u} – \frac{\langle \mathbf{u} ,\, \mathbf{v} \rangle}{\lVert \mathbf{v} \rVert^2} \mathbf{v} \tag{2}\] 라고 하자. 그러면 \(\mathbf{u}\)는 …

Continue Reading
October 5, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

Exercises: Determinants

by I Seul Bee September 9, 2020
written by I Seul Bee

This set of exercises is retrieved from the eighth chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 8.1 Using the recursive definition given in the proof of the existence of determinant, systematically evaluate the determinant of the following matrix: \[A=\begin{pmatrix}1&2&1\\0&1&1\\1&0&2\end{pmatrix}.\] Solution. \[\begin{aligned} \det (A) &= 1 \cdot …

Continue Reading
September 9, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

Exercises: Inner Product Spaces

by I Seul Bee September 9, 2020
written by I Seul Bee

This set of exercises is retrieved from the seventh chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 7.1 In \(\mathbb{R}^3,\) compute the inner product of \((1,\,2,\,-1)\) and \((2,\,1,\,4).\) What is the length of each vector? What is the angle between these vectors? Solution. The lengths of given …

Continue Reading
September 9, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

Exercises: Representation of Linear Transformations

by I Seul Bee September 8, 2020
written by I Seul Bee

This set of exercises is retrieved from the sixth chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 6.1 Let \(T:\mathbb{R}^2 \rightarrow \mathbb{R}\) be a linear transformation and suppose that \(T(1,\,1)=5\) and \(T(0,\,1)=2.\) Find \(T(x_1,\,x_2)\) for all \(x_1,\) \(x_2 \in \mathbb{R}.\) Solution. Suppose \((x_1 ,\,x_2 )\) be given. …

Continue Reading
September 8, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

Exercises: Multiple Systems and Matrix Inversion

by I Seul Bee September 8, 2020
written by I Seul Bee

This set of exercises is retrieved from the fifth chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 5.1 Solve the following matrix equation for \(x,\) \(y,\) \(z\) and \(w.\) \[ \begin{pmatrix} 1&2 \\ 0&1 \end{pmatrix} \begin{pmatrix} x&y \\ z&w \end{pmatrix} = \begin{pmatrix} 10&2 \\ 4&2 \end{pmatrix} \] …

Continue Reading
September 8, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

Exercises: Dimension

by I Seul Bee August 26, 2020
written by I Seul Bee

This set of exercises is retrieved from the fourth chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 4.1 Let \(v_1 ,\) \(\cdots ,\) \(v_n \) be linearly independent family in a vector space \(V.\) Show that if \(i\ne j,\) then \(v_i \ne v_j .\) In other words, …

Continue Reading
August 26, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

Exercises: Vector Spaces and Linear Transformations

by I Seul Bee August 25, 2020
written by I Seul Bee

This set of exercises is retrieved from the third chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 3.1 Show that the solution set \(W\) of vectors \((x_1 ,\,x_2 )\) in \(\mathbb{R}^2\) satisfying the equation \[x_1 + 8x_2 = 0\] is a subspace of \(\mathbb{R}^2 .\) Solution. The …

Continue Reading
August 25, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Abstract AlgebraLinear Algebra

Exercises: Groups and Group Homomorphisms

by I Seul Bee August 23, 2020
written by I Seul Bee

This set of exercises is retrieved from the second chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 2.1 Give an example of a noncommutative group of \(24\) elements. Solution. \(S_4 .\) Problem 2.2 Give an example of a group \(G\) and a nonempty subset \(H\) of \(G\) …

Continue Reading
August 23, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
  • 1
  • 2

Search

Categories

  • Abstract Algebra (3)
  • Analytic Geometry (1)
  • Applied Activity (1)
  • Basic Mathematics (6)
  • Calculus (49)
  • Classical Geometry (1)
  • Complex Analysis (2)
  • Differential Equation (1)
  • Differential Geometry (1)
  • Functional Analysis (2)
  • General Topology (2)
  • Linear Algebra (32)
  • Mathematical Analysis (3)
  • Probability & Statistics (1)
  • Real Analysis (1)
  • Sets and Logic (3)

Statistics

  • 17
  • 180
  • 1,591
  • 7,849
  • 266,693

Sejong Academy of Science and Arts

  • Introduction
  • Recent Articles
  • Topic Index
  • Tag Cloud
  • Links