벡터의 직교분해를 이용하여 코시-슈바르츠 부등식을 증명해 보자. \(V\)가 벡터공간이고 \(\mathbf{u},\,\mathbf{v}\in V\)라고 하자. 만약 \(\mathbf{u}\)와 \(\mathbf{v}\) 중 하나 이상이 \(\mathbf{0}\)이면 자명하게 \[ \lvert \langle \mathbf{u} ,\, \mathbf{v} \rangle \rvert \le \lVert \mathbf{u} \rVert \lVert \mathbf{v} \rVert \tag{1}\] 를 얻는다. 그러므로 \(\mathbf{u}\)와 \(\mathbf{v}\) 중 어느것도 \(\mathbf{0}\)이 아니라고 가정하자. 그리고 \[\mathbf{w} = \mathbf{u} – \frac{\langle \mathbf{u} ,\, \mathbf{v} \rangle}{\lVert \mathbf{v} \rVert^2} \mathbf{v} \tag{2}\] 라고 하자. 그러면 \(\mathbf{u}\)는 …
Tag: