함수 \(y=f(x)\)의 그래프가 뾰족한 부분이 없고 매끄럽게 이어져 있을 때 그래프 위의 한 점에서 접선을 생각할 수 있다. 이 접선의 기울기는 접점 근처에서 \(x\)의 변화량과 \(y\)의 변화량의 비의 극한값으로 구할 수 있다. 이러한 개념을 일반화하여 미분을 정의할 수 있다. 이 포스트에서는 실숫값 함수의 미분을 정의하고 그 성질을 살펴본다. 미분의 정의 함수 \(f\)가 서로 다른 두 점 \(a,\) \(b\)를 원소로 갖는 구간에서 정의되어 있다고 하자. …
Tag: