지난 포스트에서 벡터공간 \(K^n,\) \(K^m\) 사이에서 정의된 선형변환과 \(m\times n\) 행렬의 관계를 살펴보았다(지난 포스팅 보기). 이번에는 일반적인 유한차원 벡터공간 \(V,\) \(V’\) 사이에서 정의된 선형변환과 행렬의 관계를 살펴보자. \(K\)가 체이고 \(n\)과 \(m\)이 양의 정수라고 하자. 그리고 \(V\)와 \(V’\)이 \(K\) 위에서 정의된 \(n\)차원 벡터공간, \(m\)차원 벡터공간이라고 하자. 또한 \[\begin{align} B: &\,\, v_1 ,\, v_2 ,\, \cdots ,\, v_n, \\[6pt] B’ : & \,\, v_1 ‘ ,\, …
행렬
벡터공간 \(K^n,\) \(K^m\) 사이에서 정의된 선형변환과 \(m\times n\) 행렬의 관계를 살펴보자. \(K\)가 체(field)이고 \(n\)과 \(m\)이 양의 정수라고 하자. 모든 성분이 \(K\)에 속하는 \(m\times n\) 행렬들의 모임을\(\newcommand{\MatK}{\operatorname{Mat}_{m \times n}(K)}\) \[\MatK\] 로 나타낸다. 또한 정의역이 \(K^n\)이고 공역이 \(K^m\)인 선형변환들의 모임을\(\newcommand{\HomK}{\operatorname{Hom}(K^n ,\, K^m )}\) \[\HomK\] 으로 나타낸다. [여기서 \(K^n\)과 \(K^m\)은 통상적인 벡터 합과 스칼라 곱이 주어진 벡터공간이다.] 스칼라 \(k\in K\)와 \(m\times n\) 행렬 \(A = (a_{ij})_{m\times n}\), …
정사각행렬의 특성다항식을 이용한 흥미로운 등식을 살펴보자. \(A\)가 이차장사각행렬이고 \[A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\] 일 때 다음이 성립한다. \[A^2 – (a+d)A + (ad-bc)I_2 = O.\] \(A\)의 특성다항식을 \(p(t)\)라고 하고 \(t=A\)를 대입함으로써 위 식은 다음과 같이 간단하게 나타낼 수 있다. \[p(A) = O.\] 이 등식이 성립하는 것은 우연이 아니며, Cayley-Hamilton 정리의 결과이다. 이 포스트에서는 특성다항식의 성질과 \(T\)-불변 공간의 개념을 살펴보고, …
계수와 상수가 실수인 이차방정식이 실수 범위에서 몇 개의 해를 갖는지 알아보기 위해서는 판별식의 부호를 살펴보면 된다. 이와 비슷하게 정사각행렬의 역행렬이 존재하는지 알아보는 공식이 있는데, 그것이 행렬식이다. 행렬식은 특정한 조건을 만족시키는 선형범함수로 정의될 수도 있는데, 그러한 함수는 크기가 작은 행렬의 행렬식을 이용하여 크기가 큰 행렬의 행렬식을 계산하는 귀납적인 방법으로 정의된다. 또한 행렬식은 행렬의 각 성분들을 이용하여 직접 계산하는 방식으로 정의될 수도 있다. 이 포스트에서는 행렬식의 …