이란의 전통 월별 상환금 계산 방법 글쓴이: 페이만 밀란파(Peyman Milanfar) 옮긴이: 이슬비(designeralice@daum.net) 최근에 나는 대출 금액의 월별 상환금을 추정하는 매우 빠르고 효과적인 방법을 배웠다. 이 방법은 아버지께서 가르쳐 주셨는데, 아버지께서는 19세기 이란에서 무역을 하셨던 할아버지로부터 배우셨다고 한다. 이 공식이 처음 만들어진 기원은 미스테리이지만, 이 방법은 이란을 포함한 많은 지역에서 사용되고 있다. 아버지께서 알려주신 공식은 다음과 같다. \[(\text{월별 상환금}) = \frac{1}{(\text{월수})} [(\text{원금}) + (\text{이자})].\] 여기서 …
Tag:
테일러 급수
무한급수 수렴판정을 하다 보면 삼각함수를 다루기 어려운 경우가 있다. 다음 무한급수를 살펴보자. \[\sum_{n=5}^{\infty} \left( \frac{1}{n} – \sin \frac{n+1}{n^2 – 5n + 4} \right ). \tag{1}\] \(n \rightarrow 0\)일 때 사인 함수 안에 있는 분수식이 \(0\)에 수렴하고, \(x=0\) 근처에서 \(\sin x\)는 \(x\)와 비슷하게 움직이므로, 위 무한급수에서 사인을 그냥 없애고 판정해도 될 것 같다. 즉 위 무한급수의 수렴 여부는 \[\sum_{n=5}^{\infty} \left( \frac{1}{n} – \frac{n+1}{n^2 -5n +4} …
지난 포스트에서 테일러 급수를 정의하고 함수를 테일러 급수로 나타내는 방법을 살펴보았다. 또한 \(f\)에 의하여 생성된 테일러 급수가 \(f\)에 수렴함을 증명하는 방법도 살펴보았다. 더불어 거듭제곱급수를 이용하여 삼각함수를 정의하는 방법(관련 포스트)과 거듭제곱급수를 이용하여 지수함수를 정의하는 방법(관련 포스트)도 살펴보았다. 이 포스트에서는 테일러 급수를 활용한 다양한 예를 살펴본다. 내용 순서 이항급수 비초등적분 라이프니츠 공식 부정형 극한의 계산 함수의 정의역 확장하기 미리 알아야 할 내용 거듭제곱급수 (관련 글) 테일러 …