이 포스트에서는 고윳값과 고유벡터의 개념을 살펴보고 특성다항식을 이용하여 고윳값을 구하는 방법을 살펴봅니다. 또한 에르미트 변환과 유니타리 변환의 개념을 바탕으로 스펙트럼 분해 정리를 살펴봅니다. \[ \newcommand{\parallelsym}{\mathbin{\!/\mkern-5mu/\!}} \] 고윳값과 고유벡터의 뜻 \(V\)가 체 \(K\) 위에서 정의된 벡터공간이고 \(T : V \rightarrow V\)가 선형변환이라고 하자. 그리고 스칼라 \(\lambda \in K\)와 영벡터가 아닌 벡터 \(v\in V\)가 존재하여 \[T(v) = \lambda v\tag{1}\] 을 만족시킨다고 하자. 이때 \(\lambda\)를 \(T\)의 고윳값(eigenvalue)이라고 …
Tag: