지난 포스트에서 테일러 급수를 정의하고 함수를 테일러 급수로 나타내는 방법을 살펴보았다. 또한 \(f\)에 의하여 생성된 테일러 급수가 \(f\)에 수렴함을 증명하는 방법도 살펴보았다. 더불어 거듭제곱급수를 이용하여 삼각함수를 정의하는 방법(관련 포스트)과 거듭제곱급수를 이용하여 지수함수를 정의하는 방법(관련 포스트)도 살펴보았다. 이 포스트에서는 테일러 급수를 활용한 다양한 예를 살펴본다. 내용 순서 이항급수 비초등적분 라이프니츠 공식 부정형 극한의 계산 함수의 정의역 확장하기 미리 알아야 할 내용 거듭제곱급수 (관련 글) 테일러 …
삼각함수
중학교와 고등학교 과정에서 삼각함수는 기하학적으로 정의된다. 그러나 삼각함수를 기하학적으로 정의하면 여러 모로 불편한 점이 많다. 먼저 삼각함수의 정의역은 각(angle)의 집합이므로 삼각함수를 다른 함수와 합성할 때 각이 수와 혼용되어야 한다. 또한 컴퓨터 시스템에서 삼각함수의 값을 계산할 때 기하학적인 방법을 사용하기가 어렵다. 게다가 기하학적으로 정의된 삼각함수는 그 정의역을 복소수 범위로 확장하기도 어렵다. 이와 같은 불편함 때문에 삼각함수를 다른 방법으로 정의해야 한다. 이 포스트에서는 거듭제곱급수를 이용하여 삼각함수를 …
이 포스트에서는 삼각함수와 역삼각함수의 미분 공식을 살펴본다. 삼각함수의 미분 삼각함수의 미분 공식을 유도할 때에는 삼각함수의 덧셈 공식 \[\sin (x+h) = \sin x \cos h + \cos x \sin h\] 와 극한 공식 \[\lim_{h\to 0}\frac{\cos h -1}{h} = 0 ,\quad \lim_{h\to 0}\frac{\sin h}{h} =1\] 이 사용된다. 이 공식을 이용하여 사인 함수의 도함수를 구하면 다음과 같다. \[\begin{align} \frac{d}{dx} \sin x &= \lim_{h\to 0} \frac{\sin(x+h) – \sin …
\(x\)축에서 한 점 \(c\)에 다가갈 수 있는 방향은 두 가지가 있다. 즉 \(c\)의 왼쪽에서 \(c\)에 다가갈 수도 있으며, \(c\)의 오른쪽에서 \(c\)에 다가갈 수도 있다. 이와 같이 \(x\)가 \(c\)에 다가가는 방향에 따라 \(c\)에서 \(f\)의 극한을 구분할 수 있다. 좌극한과 우극한의 정의 \(x\)가 \(c\)의 왼쪽에서 \(c\)에 접근할 때 \(f(x)\)의 값이 \(L\)에 다가가면 \(f\)는 \(c\)에서 좌극한 \(L\)을 가진다고 말한다. 우극한에 대해서도 비슷한 방법으로 정의한다. 논리적인 정의는 다음과 …