벡터의 직교분해를 이용하여 코시-슈바르츠 부등식을 증명해 보자. \(V\)가 벡터공간이고 \(\mathbf{u},\,\mathbf{v}\in V\)라고 하자. 만약 \(\mathbf{u}\)와 \(\mathbf{v}\) 중 하나 이상이 \(\mathbf{0}\)이면 자명하게 \[ \lvert \langle \mathbf{u} ,\, \mathbf{v} \rangle \rvert \le \lVert \mathbf{u} \rVert \lVert \mathbf{v} \rVert \tag{1}\] 를 얻는다. 그러므로 \(\mathbf{u}\)와 \(\mathbf{v}\) 중 어느것도 \(\mathbf{0}\)이 아니라고 가정하자. 그리고 \[\mathbf{w} = \mathbf{u} – \frac{\langle \mathbf{u} ,\, \mathbf{v} \rangle}{\lVert \mathbf{v} \rVert^2} \mathbf{v} \tag{2}\] 라고 하자. 그러면 \(\mathbf{u}\)는 …
부등식
\(n\)이 \(2\) 이상인 자연수이고 \(a_1 ,\) \(\cdots ,\) \(a_n ,\) \(b_1 ,\) \(\cdots,\) \(b_n\)이 모두 실수일 때 다음이 성립한다. \[\left( \sum_{i=1}^n a_i b_i \right)^2 \le \left( \sum_{i=1}^n a_i ^2\right) \left(\sum_{i=1}^n b_i ^2 \right).\tag{1}\] 이 부등식을 코시-슈바르츠 부등식(Cauchy-Schwarz inequality)이라고 부른다. 라그랑주 승수법(method of Lagrange’s multiplier)을 이용하여 이 부등식을 증명해 보자. 증명을 마칠 때까지 첨수 \(i\)와 \(j\)는 \(n\) 이하의 자연수를 나타내는 것으로 약속한다. 증명 과정은 두 …
\(n\)이 \(2\) 이상인 자연수이고 \(x_1 ,\) \(x_2 ,\) \(\cdots ,\) \(x_n\)이 모두 \(0\) 이상인 실수라고 하자. 그러면 다음 부등식이 성립한다. \[\sqrt[n]{x_1 x_2 \cdots x_n} \le \frac{x_1 + x_2 + \cdots + x_n}{n}\tag{1}\] 여기서 등식이 성립할 필요충분조건은 \(x_1 = x_2 = \cdots = x_n\)인 것이다. 라그랑주 승수법(method of Lagrange’s multiplier)을 이용하여 이것을 증명해 보자. 증명을 마칠 때까지 첨수 \(i\)는 \(n\) 이하의 자연수를 나타내는 것으로 약속한다. …