중학교와 고등학교 과정에서는 같은 수를 여러 번 곱한 것으로 거듭제곱을 정의한 뒤 거듭제곱의 지수를 정수, 유리수 범위로 확장하며, 극한을 이용하여 실수 지수를 정의한다. 그 뒤에 지수를 변수로 갖는 함수를 지수함수로 정의하며, 지수함수의 역함수를 로그함수로 정의한다. 이와 같이 정의된 지수함수는 미분 가능한 함수가 되며, 특히 밑이 자연지수인 함수는 다음과 같은 거듭제곱급수로 나타낼 수 있다. \[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} …
Tag:
멱급수
중학교와 고등학교 과정에서 삼각함수는 기하학적으로 정의된다. 그러나 삼각함수를 기하학적으로 정의하면 여러 모로 불편한 점이 많다. 먼저 삼각함수의 정의역은 각(angle)의 집합이므로 삼각함수를 다른 함수와 합성할 때 각이 수와 혼용되어야 한다. 또한 컴퓨터 시스템에서 삼각함수의 값을 계산할 때 기하학적인 방법을 사용하기가 어렵다. 게다가 기하학적으로 정의된 삼각함수는 그 정의역을 복소수 범위로 확장하기도 어렵다. 이와 같은 불편함 때문에 삼각함수를 다른 방법으로 정의해야 한다. 이 포스트에서는 거듭제곱급수를 이용하여 삼각함수를 …