이 포스트에서는 직사각형 영역에서 정의된 함수의 이중적분을 정의하고, 연속함수의 적분 가능성을 증명합니다. 리만 적분의 엄밀한 정의가 기억나지 않는다면 일변수 함수의 리만 적분을 소개하는 이전 글(바로가기)을 먼저 읽어 보기 바랍니다. 리만 적분의 정의 먼저 이중적분을 정의하자. \(I = [a,\,b]\)와 \(J = [c,\,d]\)가 길이가 양수인 구간이고 \(R = I \times J\)라고 하자. 그리고 \[\begin{gather} P_I = \left\{ x_0 ,\, x_1 ,\, x_2 ,\, \cdots ,\, x_m …
Tag:
리만 적분
이 포스트는 미적분학보다 상급 과정의 내용을 다루고 있습니다. 미적분학을 처음 공부하는 학생들은 이 포스트의 내용을 이해하기 어려울 수 있습니다. 이 포스트의 내용을 이해하기 위해서는 리만 적분의 엄밀한 정의, 리만 적분 가능성에 대한 리만 판정법, 상한과 하한의 성질을 알아야 합니다. 미적분학을 처음 공부하지만 이 포스트의 내용을 꼭 알고 싶은 사람은 정의 1, 정리 1, 예제 1, 정리 2의 내용(풀이와 증명 제외)과 예제 5, 예제 6을 …
함수 \(f\)가 구간 \([a,\,b]\)에서 연속이고 임의의 \(x\in[a,\,b]\)에 대하여 \(f(x) > 0\)일 때, \(x\)축과 \(y=f(x)\)의 그래프, 그리고 두 직선 \(x=a,\) \(x=b\)로 둘러싸인 부분의 넓이를 \([a,\,b]\)에서 \(f\)의 정적분이라고 부른다. 이와 같은 정의는 직관적인 정의이며 연속함수에 대해서만 정의되므로 대단히 협소하다. 이 포스트에서는 리만 적분을 엄밀하게 정의하고, 적분 가능성과 정적분의 성질을 살펴본다. 구분구적법 \(I = [a,\,b]\)가 길이가 양수인 구간이고 함수 \(f\)가 \([a,\,b]\)에서 정의되었다고 하자. 그리고 자연수 \(n\)에 대하여 …