지난 포스트에서 벡터공간 \(K^n,\) \(K^m\) 사이에서 정의된 선형변환과 \(m\times n\) 행렬의 관계를 살펴보았다(지난 포스팅 보기). 이번에는 일반적인 유한차원 벡터공간 \(V,\) \(V’\) 사이에서 정의된 선형변환과 행렬의 관계를 살펴보자. \(K\)가 체이고 \(n\)과 \(m\)이 양의 정수라고 하자. 그리고 \(V\)와 \(V’\)이 \(K\) 위에서 정의된 \(n\)차원 벡터공간, \(m\)차원 벡터공간이라고 하자. 또한 \[\begin{align} B: &\,\, v_1 ,\, v_2 ,\, \cdots ,\, v_n, \\[6pt] B’ : & \,\, v_1 ‘ ,\, …
Tag:
동형사상
벡터공간 \(K^n,\) \(K^m\) 사이에서 정의된 선형변환과 \(m\times n\) 행렬의 관계를 살펴보자. \(K\)가 체(field)이고 \(n\)과 \(m\)이 양의 정수라고 하자. 모든 성분이 \(K\)에 속하는 \(m\times n\) 행렬들의 모임을\(\newcommand{\MatK}{\operatorname{Mat}_{m \times n}(K)}\) \[\MatK\] 로 나타낸다. 또한 정의역이 \(K^n\)이고 공역이 \(K^m\)인 선형변환들의 모임을\(\newcommand{\HomK}{\operatorname{Hom}(K^n ,\, K^m )}\) \[\HomK\] 으로 나타낸다. [여기서 \(K^n\)과 \(K^m\)은 통상적인 벡터 합과 스칼라 곱이 주어진 벡터공간이다.] 스칼라 \(k\in K\)와 \(m\times n\) 행렬 \(A = (a_{ij})_{m\times n}\), …