SASA Math
  • Introduction
  • Recent Articles
  • Topic Index
  • Tag Cloud
  • Links
Tag:

기저

Linear Algebra

벡터공간의 차원은 잘 정의된다

by YC Lee April 19, 2023
written by YC Lee

이 글은 벡터공간의 차원이, 그 벡터공간의 기저의 기수(cardinal number)로서 잘 정의됨을 살펴보는 글이다. 유한집합으로 생성되는 벡터공간의 차원이 잘 정의된다는 것은 보통의 선형대수학 교재에 아주 잘 소개되어 있으므로 여기서는 생략하고, 이 글에서는 유한집합으로 생성되지 않는 벡터공간, 즉 무한차원벡터공간의 차원이 잘 정의되는 것을 살펴본다. 이 글은 참고문헌 [1]의 제9장 2절의 내용을 바탕으로 작성하였다. Invariance of Dimensionality 체 \(\mathbb{F}\) 위의 벡터공간 \(V\)가 주어졌을 때, (선택공리를 가정했을 때) …

Continue Reading
April 19, 2023 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail
Linear Algebra

특성부분공간과 조르당 표준형

by I Seul Bee November 9, 2020
written by I Seul Bee

유한차원 벡터공간 \(V\) 위에서 자기준동형사상 \(T\)가 정의되어 있을 때 \(T\)의 표현행렬은 \(V\)에 어떠한 기저가 주어졌는지에 따라 달라진다. \(V\)와 \( T\)가 적절한 조건을 만족시키면 \(V\)의 기저를 적절히 택하여 \(T\)의 표현행렬이 ‘대단히 좋은 형태’가 되도록 할 수 있다. 이 포스트에서는 벡터공간을 특성부분공간의 직합으로 나타내는 방법과 자기준동형사상을 조르당 표준형으로 나타내는 방법을 살펴본다. 이 포스트에서 다루는 벡터공간은 유한차원 벡터공간인 것으로 약속한다. \[ \newcommand{\Hom}{{\operatorname{Hom}}} \newcommand{\Mat}{{\operatorname{Mat}}} \newcommand{\proj}{{\operatorname{proj}}} \newcommand{\adj}{{\operatorname{adj}}} \newcommand{\Ker}{{\operatorname{Ker}}} \] …

Continue Reading
November 9, 2020 0 comments
FacebookTwitterPinterestLinkedinTumblrWhatsappLINEEmail

Search

Categories

  • Abstract Algebra (3)
  • Analytic Geometry (1)
  • Applied Activity (1)
  • Basic Mathematics (6)
  • Calculus (49)
  • Classical Geometry (1)
  • Complex Analysis (2)
  • Differential Equation (1)
  • Differential Geometry (1)
  • Functional Analysis (2)
  • General Topology (2)
  • Linear Algebra (32)
  • Mathematical Analysis (3)
  • Probability & Statistics (1)
  • Real Analysis (1)
  • Sets and Logic (3)

Statistics

  • 9
  • 135
  • 1,269
  • 6,916
  • 270,516

Sejong Academy of Science and Arts

  • Introduction
  • Recent Articles
  • Topic Index
  • Tag Cloud
  • Links