이 포스트에서는 직사각형 영역에서 정의된 함수의 이중적분을 정의하고, 연속함수의 적분 가능성을 증명합니다. 리만 적분의 엄밀한 정의가 기억나지 않는다면 일변수 함수의 리만 적분을 소개하는 이전 글(바로가기)을 먼저 읽어 보기 바랍니다. 리만 적분의 정의 먼저 이중적분을 정의하자. \(I = [a,\,b]\)와 \(J = [c,\,d]\)가 길이가 양수인 구간이고 \(R = I \times J\)라고 하자. 그리고 \[\begin{gather} P_I = \left\{ x_0 ,\, x_1 ,\, x_2 ,\, \cdots ,\, x_m …
Category:
Mathematical Analysis
이 포스트는 미적분학보다 상급 과정의 내용을 다루고 있습니다. 미적분학을 처음 공부하는 학생들은 이 포스트의 내용을 이해하기 어려울 수 있습니다. 이 포스트의 내용을 이해하기 위해서는 리만 적분의 엄밀한 정의, 리만 적분 가능성에 대한 리만 판정법, 상한과 하한의 성질을 알아야 합니다. 미적분학을 처음 공부하지만 이 포스트의 내용을 꼭 알고 싶은 사람은 정의 1, 정리 1, 예제 1, 정리 2의 내용(풀이와 증명 제외)과 예제 5, 예제 6을 …
바이어슈트라스의 근사 정리에 의하면 \(f\)가 닫힌 구간 \([a,\,b]\)에서 정의된 연속함수일 때 \([a,\,b]\) 위에서 \(f\)에 균등수렴하는 다항함수열이 존재한다. 여기서는 더 일반적인 경우를 살펴보자. 정의 1. (대수; algebra) \(X\)가 거리공간이고 \(C(X)\)가 정의역이 \(X\)인 연속 실함수들의 모임이라고 하자. \(\mathcal{A}\)가 \(C(X)\)의 부분집합이고 공집합이 아니며 두 조건 \(f,\,g\in\mathcal{A}\)일 때 \(f+g \in \mathcal{A},\) \(fg\in\mathcal{A}\) \(f\in\mathcal{A},\) \(c\in\mathbb{R}\)일 때 \(cf\in\mathcal{A}\) 를 모두 만족시키면 \(\mathcal{A}\)를 \(C(X)\)의 실함수 대수(real function algebra) 또는 간단히 대수(algebra)라고 …