\(\mathbb{R}^3\)에서의 유향선적분은 1형식을 이용하여 \[\int_C \mathbb{F} \cdot \mathbb{T} \,dx = \int_C P \,dx + Q\,dy + R\,dz\] 의 꼴로 나타낼 수 있다. 여기서 \(C\)는 \(\mathbb{R}^3\)에 포함되는 매끄러운 곡선이다. 즉 \(C\)는 \(\mathbb{R}^3\)에 포함되는 1차원 집합이다. 한편 \(\mathbb{R}^3\)에서의 유향면적분은 2형식을 이용하여 \[\iint_S \mathbb{F} \cdot \mathbb{n} \,d\sigma = \iint_S P\,dy\,dz + Q\,dz\,dx + R\,dx\,dy\] 의 꼴로 나타낼 수 있다. 여기서 \(S\)는 \(\mathbb{R}^3\)에 포함되는 매끄러운 곡면이다. 즉 \(S\)는 …
Category: