This set of exercises is retrieved from the second chapter of Linear Algebra by Robert J. Valenza. Note that these solutions are not fully elaborated; You have to fill the descriptions by yourself. Problem 2.1 Give an example of a noncommutative group of \(24\) elements. Solution. \(S_4 .\) Problem 2.2 Give an example of a group \(G\) and a nonempty subset \(H\) of \(G\) …
Category:
Abstract Algebra
가우스의 보조정리에 관한 질문이 Share Your Math에 있어서 이에 대해 소개하고자 합니다. ‘가우스의 정리’라고 말하면 그 종류가 너무 많아서 무엇을 일컫는지 혼동의 여지가 있습니다. 지금 살펴보고자 하는 가우스의 보조정리는, 물론, 질문과 관련있는 다항식의 인수분해와 관련된 정리입니다. 달빛학사 Share Your Math 게시판에 올라온 질문의 요지는 정수계수 다항식이 (차수가 더 낮은) 유리계수 다항식 두 개로 인수분해될 필요충분조건이 그 다항식이 (차수가 더 낮은) 정수계수 다항식 두 개로 …
힐베르트의 영점 정리(Nullstellensatz)는 준동형사상의 확장 정리를 유한생성환에 적용한 정리이다. 먼저 몇 개의 보조정리를 도입한 후 영점 정리를 증명하자. 정리 1. \(k\)가 체이고 \(k[x] = k[x_1 ,\, \cdots ,\, x_n ]\)이 \(k\) 위에서의 유한생성환이라고 하자. 또한 \(\varphi : k \,\to\,L\)이 \(k\)로부터 대수적으로 닫힌 체 \(L\)로의 매장함수라고 하자. 그러면 \(\varphi\)를 확장하여 \(k[x]\)로부터 \(L\)로의 일대일인 준동형사상을 만들 수 있다. 증명 \(\mathfrak{M}\)이 \(k\)의 극대아이디얼이고, \(\sigma\)가 \(k[x]\)로부터 \(k[x]/\mathfrak{M}\)으로의 표준준동형사상이라고 …