A Persian Folk Method of Figuring Interest

Peyman Milanfar

To cite this article: Peyman Milanfar (1996) A Persian Folk Method of Figuring Interest, Mathematics Magazine, 69:5, 376-376, DOI: 10.1080/0025570X.1996.11996479

To link to this article: https://doi.org/10.1080/0025570X.1996.11996479

Published online: 11 Apr 2018.

Submit your article to this journal

Article views: 2

View related articles

REFERENCES

1. G. Birkhoff and S. MacLane, A Brief Survey of Modern Algebra, 2nd edition, Macmillan Publishing Co., New York, NY, 1965.
2. J. A. Gallian, On the Converse of Lagrange's Theorem, this Macazine, 63 (1993), 23.
3. J. A. Gallian, Contemporary Abstract Algebra, 3rd edition, D. C. Heath and Company, Lexington, MA, 1994.
4. I. N. Herstein, Abstract Algebra, 2nd edition, Macmillan Publishing Co., New York, NY, 1990.

A Persian Folk Method of Figuring Interest

PEYMAN MILANFAR

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

I recently learned a very quick and effective way of estimating monthly payments on a loan. My father showed me the method, having learned it himself from my grandfather, who was a merchant in nineteenth century Iran. While its origins remain a mystery, the method is still in use among merchants all around Iran, and perhaps elsewhere.

My father used the formula:

$$
\text { Monthly payment }=\frac{1}{\text { Number of months }}(\text { Principal }+ \text { Interest })
$$

he calculated the interest as

$$
\text { Interest }=\frac{1}{2} \text { Principal } \times \text { Number of years } \times \text { Annual interest rate } \text {. }
$$

The exact formula, assuming interest accrued monthly, can be found in any basic finance textbook:

$$
\begin{equation*}
C=\frac{r(1+r)^{N} P}{(1+r)^{N}-1} \tag{1}
\end{equation*}
$$

where C is the (exact) monthly payment, r is the monthly interest rate ($1 / 12$ the annual interest rate), N is the total number of months, and P is the principal. With this notation, the folk formula becomes

$$
\begin{equation*}
C_{f}=\frac{1}{N}\left(P+\frac{1}{2} P N r\right) \tag{2}
\end{equation*}
$$

In many cases, C_{f} is a surprisingly good approximation to C. As an example, for a 4 -year auto loan of $\$ 10,000$ at an annual rate of 7% compounded monthly, the exact formula gives monthly payments of $\$ 239.46$ while the folk estimate gives $\$ 237.50$.

To see why the approximation works, we regard C as a function of r, with all other quantities held fixed. (The singularity in (1) at $r=0$ can be cancelled out.) A straightforward calculation shows that the first order Maclaurin polynomial for $C(r)$ has the form

$$
\begin{equation*}
C(r) \approx \frac{1}{N}\left(P+\frac{1}{2} P(N+1) r\right) \tag{3}
\end{equation*}
$$

which closely resembles the definition of C_{f}. For a fixed P, when r is sufficiently small and N sufficiently large, the difference between (2) and (3) is small.

