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ELEMENTARY APPROACH TO THE HARTOGS EXTENSION

THEOREM

ALEKSANDER SIMONIČ

Abstract. In this paper we present a proof of Hartogs’ extension theorem,
following T. Sobieszek’s paper from 2003. Hartogs’ theorem provides a large
class of domains where holomorphic functions have analytic continuation to
larger domains, and is “a several complex variables theorem” in nature be-
cause its conclusion is false in the complex plane. Sobieszek’s proof is quite
remarkable because he uses, stated in his paper without proofs, only higher-

dimensional identity principle for holomorphic functions and Cauchy’s integral
formula for compact sets. We proved this two theorems here, making this ex-
position self-contained. The only background required is an undergraduate
course in real and complex analysis and in point-set topology.

1. Introduction

In this paper we present an “elementary” proof of the following celebrated result,
which many complex analysts consider the birth of multivariable complex analysis.

Theorem 1 (Hartogs’ Extension Theorem). Let Ω be a bounded domain in C
n

where n ≥ 2 and K ⊂ Ω is a compact subset, such that Ω \K is again a domain.

Then every holomorphic function f on Ω \K has a unique holomorphic extension

f̃ to Ω, that is f̃ |Ω\K = f .

This theorem is often used to explain the difference between the theory of several
complex variables and the one variable theory. Its standard proof needs prepara-
tion beyond the scope of an undergraduate course in complex analysis. Fortunately,
Tomasz Sobieszek [Sob03] discovered a proof in which only a higher-dimensional
identity principle (Theorem 4) and Cauchy’s integral formula for compact sets (The-
orem 6) are used. The latter theorem is closely related to Cauchy’s integral formula

for rectangles (Theorem 5), the only difference being that now the values come
from a given compact subset of a domain in the complex plane. Unfortunately,
Sobieszek’s proof of Hartogs’ theorem does not seem to be widely known among
complex analysts. To the author’s knowledge, the only source which contains such
a sketch of the proof with reference to [Sob03] is Jarnicki and Pflug’s textbook
[JP08, p. 58].

Throughout this paper we use the projection map πn : Cn → Cn−1 defined by
πn(z1, . . . , zn) := (z1, . . . , zn−1). Immediate generalization is the map πi where we
“skip the ith component”. Of course, the notation for standard projection to the
ith component is πi. Sobieszek’s theorem may be stated in the following form.

Theorem 2. Let Ω be a domain in Cn where n ≥ 2 and A ⊂ Ω is a subset, such

that Ω \A is again a domain. For z′ ∈ πi(A) define the set

Ai(z
′) :=

{
z ∈ A : πi(z) = z′

}
. (1)

If πi (Ω) \ πi (A) is a nonempty open set and Ai(z
′) is a compact set for every

z′ ∈ πi (A), then every holomorphic function f on Ω \A has a unique holomorphic

extension f̃ to Ω.

2010 Mathematics Subject Classification. 32D15,30E20.

http://arxiv.org/abs/1608.00950v1


2 ALEKSANDER SIMONIČ

Using some general topology, it is easy to see that Theorem 1 is really a special
case of Theorem 2. Recall that a domain in Cn is by definition an open and path-
connected1 subset. Therefore A must be a closed subset of Ω. The projection
πi is an open and continuous map, which is easy to verify by using one possible
topological basis of Cn - polydiscs (see Section 3). Compact sets in Cn (or R2n) are
by Heine-Borel’s theorem (see, e. g., [Rud76, Theorem 2.41]) a closed and bounded
subsets. Conclusion is that if A is a compact set, then πi (A) and Ai(z

′) are compact
for every z′ ∈ πi (A), providing a nonempty open set πi (Ω)\πi (A). The conditions
of Theorem 2 are thus satisfied.

We choose to present the proof of Theorem 2 rather than just the proof of
Hartogs’ extension theorem. This choice is based on the fact that there is no
essential difference between the two proofs because the main techniques are the
same. Also, there are some other benefits, for instance the set A needs not to be
compact. As an example we demonstrate in the next section that Hartogs’ figures,
important domains in Cn defined by (4), have the extension property. We must say
that unboundedness of a domain Ω in Sobieszek’s theorem is not a generalization of
Hartogs’ extension theorem. We stated “bounded version” of Theorem 1 because
then it is equivalent to Bochner’s extension theorem (Theorem 3). But classical
proof of Theorem 1 is also valid for unbounded domains, compare proofs of [Kra01,
Theorem 1.2.6] and [Sch05, Theorem 5.4.4].

In this article, we provide a proof of Theorem 2 with as few sets of techniques as
possible. To accomplish this task, we give a proof of the multidimensional identity
principle (Section 3) and a proof of Cauchy’s integral formula for compact sets (Sec-
tion 4) assuming one-dimensional identity principle and Cauchy’s integral formula
for rectangles to be known. We start with some historical comments on Theorem
1 and some of its consequences, where we inspect Hartogs’ original approach, and
finish with Section 5 where we present the proof.

2. Motivation

Assuming that the reader is familiar with the definition of a holomorphic function
of one complex variable, we start with a higher dimensional definition. There are
many definitions, but probably the simplest one is where we demand holomorphicity
in each variable. Let U be an open subset in Cn where n ≥ 2. The function
f : U → C is separately holomorphic in z1 if for every z2, . . . , zn ∈ C the one-
variable function

C ∋ ζ 7→ f (ζ, z2, . . . , zn)

is holomorphic on the set {ζ ∈ C : (ζ, z2, . . . , zn) ∈ U}. The function f is sep-

arately holomorphic if it is separately holomorphic in every variable. Finally,
we say that f is holomorphic if it is continuous and separately holomorphic2.
The common notation for a family of holomorphic functions on U is O (U). Write
zi = xi + iyi where xi and yi are real variables. Remember the relations from the
one-variable theory

fzi :=
∂f

∂zi
=

1

2

Å
∂f

∂xi

− i
∂f

∂yi

ã
and fz̄i :=

∂f

∂z̄i
=

1

2

Å
∂f

∂xi

+ i
∂f

∂yi

ã
(2)

for f being a continuously differentiable function on U . Then f is holomorphic if
and only if fz̄i ≡ 0 on U for every 1 ≤ i ≤ n.

1A subset X ⊂ Cn (or more generally topological space X) is path-connected if for arbitrary
points x, y ∈ X a continuous map γ : [0, 1] → X exists such that γ(0) = x and γ(1) = y. From
now on, we just say connected, as it is standard in analysis.

2The hypothesis about continuity is superfluous, which is another important Hartogs’ contri-
bution. The proof is not simple, see, e. g., [Kra01, pp. 107-110].
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Theorem 1 is attributed to a German mathematician Friedrich M. Hartogs

(1874–1943) and is also known as Hartogs’ Kugelsatz or just Kugelsatz. This name
comes from two German words, namely “die Kugel” (i. e., a ball) and “der Satz”
(i. e., a sentence, a theorem). It is difficult to trace where and when the name
first appeared. Although it might have circulated among German mathematicians
before (i. e., in the first half of the 20th century), it surely appeared in the second
edition of Behnke and Thullen’s book [BT70] on p. 63 in the form equivalent to
Theorem 1.

Theorem 3 (Bochner’s Extension Theorem). Every holomorphic function, defined

in a connected neighbourhood of the boundary ∂Ω of a bounded domain Ω ⊂ Cn,

where n ≥ 2, has a unique holomorphic extension on Ω.

Why equivalent? Take a setK := Ω\U where U ⊃ ∂Ω is connected neighborhood of
that function. Then K is a compact in Ω and Ω\K = Ω∩U is a domain. Therefore,
Hartogs’ theorem implies Bochner’s theorem. On the other hand, given a compact
set K ⊂ Ω, there exists a neighbourhood U ⊂ Ω of K such that ∂U ⊂ Ω \ K.
Therefore, Bochner’s extension theorem for U implies Hartogs’ extension theorem
for Ω. For a proof of Theorem 3, not relying on Theorem 1, see [Ran03] or [Ran02].
The first reference is an expository paper on multidimensional complex analysis
and the second reference discusses theorems connected to Bochner’s theorem.

This interpretation of Hartogs’ extension theorem is even more consistent with
Hartogs’ original approach. Given two bounded domains Ω1,Ω2 ⊂ C and a function
f defined in Ω1 × Ω2 and holomorphic on an open subset U ⊂ C2 containing
∂ (Ω1 × Ω2), Hartogs proved in 1906 (see his paper [Har06, p. 231]) that f is also
holomorphic in Ω1 × Ω2. For r > 0 define

D
2(r) = {(z1, z2) ∈ C

2 : |z1| < r, |z2| < r}.
Today, Hartogs’ idea is usually demonstrated in the case of a unit bidisc D2 :=
D

2(1) = D× D. Assume that holomorphic function f is defined on the open set

U := D
2(1 + ε) \ D2

(1 − ε)

for a number ε > 0 (see Figure 1). Because D
2
(1− ε) is a compact set in D2(1 + ε)

and U is connected, it follows from Theorem 1 that every f ∈ O (U) has a unique

holomorphic extension f̃ to the domain D2(1 + ε).

0

|z1|

|z2|

1 1 + ε1 − ε

1

1 + ε

1 − ε

D
2(1 − ε)

U ′

∂D2

Figure 1: The open set U indicated by three
shades of grey contains a boundary ∂D2 of the
unit bidisc D2. The domain D2∩U is indicated
by darker shades of grey while U ′ is the most
dark grey.

0

|z1|

|z2|

1

1

q2

q1

H(q1, q2)

Figure 2: Complex two-dimensional Hartogs’
figure H(q1, q2).

The translated title of Hartogs’ paper “Some conclusions from Cauchy’s integral
formula for functions of several variables” suggests that his main technique was
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Cauchy’s integral representation formula. He observed that the function

F (z1, z2) :=
1

2πi

∮

∂D

f(z1, ζ)

ζ − z2
dζ (3)

is holomorphic in whole D2 (see Figure 1). Observe that for any ζ ∈ ∂D the function
h on D2 defined by

h(z1, z2) :=
f(z1, ζ)

ζ − z2
is holomorphic, implying hz̄1 = hz̄2 = 0. We could just move the derivation of F
to z̄1 and z̄2 under the integral, and simply obtain Fz̄1 = Fz̄2 = 0. This process is
correct since real analysis shows that the derivative of the integral with parameter

(for instance, the integral (3)) is an integral of the derivative if the derivative of
the function is continuous [Rud76, Theorem 9.42]. This theorem is applicable after
decomposing the function h into real and imaginary parts and applying fundamental
equations (2). We thus obtain holomorphicity of F . Moreover, Cauchy’s integral
formula for a disc (just replace a rectangle with a disc in Theorem 5) guarantees
the equivalence of F and f on

U ′ := {z ∈ C : 1− ε < |z| < 1} × D.

Therefore, the holomorphic function F is the desired extension of f . This phe-
nomenon of a simultaneous extension shocked mathematicians of those times who
work on that problems. They realized that the theory of several complex variables
is not such a straightforward generalization of the one variable theory since they
could construct a holomorphic function without a holomorphic extension for any
planar domain through any boundary point. This new discovery became one of the
main research areas in this field, reaching its climax by characterizing the so-called
domains of holomorphy.

Exercise 1. The well-known example of a holomorphic function on a disc where
every boundary point is singular is given by the infinite series

∞∑

n=0

z2
n

=

N−1∑

n=0

z2
n

+

∞∑

n=0

Ä
z2

N
ä2n

.

To prove this fact use the above decomposition and rotations z 7→ z exp
(
21−Nkπi

)

where k are integers. The construction of such a function on arbitrary domain is
carried out through Weierstrass’ interpolation theorem, which asserts the existence
of a holomorphic function on a domain Ω with zeros on a given subset of Ω without
accumulation points there, see [Rud87, Theorem 15.11]. With help of a distance
function and rational points in C construct a subset of Ω which accumulation points
are ∂Ω, or take a look at [BG91, Corollary 3.3.3].

Hartogs’ domains, also called Hartogs’ figures, are central to this theory. These
domains are defined as

H(q1, . . . , qn) = {z ∈ D
n : |z1| > q1 or |zi| < qi for all i ∈ {2, . . . , n}} (4)

where D
n is a natural generalization of D

2 to n dimensions, and q1, . . . , qn are
numbers from the unit interval. In C2 they have fine pictorial visualizations (see
Figure 1). It is easy to observe that H(q1, . . . , qn) = Dn \A where

A := {z ∈ C : |z| ≤ q1} ×
{
D

n−1 \ {z ∈ C
n−1 : |z2| < q2, . . . , |zn| < qn}

}
.

It is tempting to use Theorem 1 with Ω = Dn and K = A. But the set A is not
compact. Applying a similar principle as before, we can simply obtain a holomor-
phic extension to D2 in the case of a complex two-dimensional Hartogs’ figures.
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The extension property for Hartogs’ figures seems plausible. Fortunately, Theorem
2 comes to our rescue. The right choice for i is 1 because we have

π1 (A) = D
n−1 \ {z ∈ C

n−1 : |z2| < q2, . . . , |zn| < qn} 6= D
n−1 = π1 (Dn) ,

providing that π1 (Dn)\π1 (A) is a nonempty open set and for every z′ ∈ π1 (A) set
A1(z

′) is a closed disc with a radius q1. This set is clearly compact, thus satisfying
the assumptions of Theorem 2.

Let us highlight another consequence that Kugelsatz leads to. Namely, multi-
variable holomorphic functions do not have isolated zeros and singularities, which
is completely false in one dimension. Indeed, if f ∈ O (Ω) has an isolated zero
a ∈ Ω, then g := 1/f is holomorphic on Ω \ {a}. But then, there is an extension
g̃ ∈ O (Ω) of the function g, which is impossible.

Exercise 2. In the same lines as before you can obtain that for f ∈ O (Ω), where
Ω ⊆ Cn is a domain and n ≥ 2, the zero set N(f) := {z ∈ Ω: f(z) = 0} is not

compact. Excluding the trivial case f ≡ 0, everything you need to verify is con-
nectedness of the nonempty complement Ω \ N(f) in order to apply Kugelsatz.
To do this, take arbitrary points z and w from that complement and define the
complex line as ℓz,w := {z + (w − z)ζ : ζ ∈ C} through this two points. Observe
that Dn(z, r) ∩ ℓz,w is some disc in the complex plane where Dn(z, r) is an arbi-
trary polydisc defined by (5). What tells you the one-dimensional identity principle
about the set Dn(z, r) ∩ ℓz,w ∩N(f)? How is this useful for our purpose?

To conclude this section, let us mention that the statement of Hartogs’ extension
theorem in the case of a punctured bidisc D

2 \ {(0, 0)} was known to Adolph

Hurwitz (1859-1919) nearly decade before. It appeared in his lecture at the first
International Congress of Mathematicians in Zürich in 1897 where he was also
involved into organisation of that congress. Interestingly, 23-old Hartogs, student
of mathematics at University of Berlin those days, was a participant.

3. The identity principle

It is reasonable to expect that the identity principle also applies to holomorphic
functions of several variables. Although this is true, it has to be assumed that the
set of coincidences of two holomorphic functions is open, instead of having cluster
points only, which is the case in the one variable theory. The basic counter-example
is (globally a nonzero) a holomorphic function f(z1, z2) = z1(z1−z2) in C2, which is
identically zero on a closed set {0}×C ⊂ C2. This short section is entirely devoted
to proving this basic theorem, relying only on the familiar one-dimensional identity
principle.

Let U1 ⊆ C
n and U2 ⊆ C

m be two open subsets. We say that f : U1 → U2,
f(z) = (f1(z), . . . , fm(z)) where z = (z1, . . . , zn) is a holomorphic map if each fi(z)
is a holomorphic function.

To generalize the notion of a unit polydisc Dn, it is common to denote by Pn a
polydisc

D
n(x, r) := {z ∈ C

n : ‖z − x‖∞ < r} (5)

where ‖z‖∞ = max1≤i≤n |zi| for z ∈ Cn. Every polydisc Pn is biholomorphic to
the unit polydisc Dn = Dn(0, 1). Indeed,

(z1, . . . , zn) 7→ (rz1 + x1, . . . , rzn + xn)

is a bijective holomorphic map with a holomorphic inverse between Dn and Pn.

Theorem 4. Assume that two holomorphic functions on a domain Ω ⊆ Cn coincide

on a nonempty open subset U ⊆ Ω. Then, they are the same on the whole of Ω.
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Proof. Let f1, f2 ∈ O (Ω) be two functions such that f1|U ≡ f2|U for an open subset
U of a domain Ω ⊆ Cn. Set F := f1 − f2. Then F |U ≡ 0. We must demonstrate
that F is identically zero on Ω.

First, let us prove this for a bidisc D
2. Choose an arbitrary point (z1, z2) ∈ U .

By definition, F is a holomorphic function on the set

{ζ ∈ C : (z1, ζ) ∈ D
2} = D. (6)

By assumption, F is identically zero on the open subset {ζ ∈ C : (z1, ζ) ∈ U} ⊆ D.
The identity principle in one complex variable tells us F |{z1}×D ≡ 0. Therefore,

F is identically zero on open subset π1 (U) × D ⊆ D2. But from this it follows
F |D×{ζ} ≡ 0 for every ζ ∈ D, again by one-dimensional identity principle. Thus F

is zero on D2.
Proof for a polydisc Dn goes by induction on n; assume that we know that

identity principle holds for Dn−1 where n ≥ 3 and by the previous paragraph this
was proved for n = 3. Choose an arbitrary point (z1, . . . , zn) ∈ U ⊆ Dn. By
similar arguments as before we obtain F |{(z1,...,zn−1)}×D ≡ 0 and F is identically

zero on open subset πn (U)× D ⊆ Dn−1 × D. By the induction argument we have
F |Dn−1×{ζ} ≡ 0 for every ζ ∈ D. Proof for polydiscs is complete.

In order to prove general case, choose an arbitrary point z ∈ Ω \ U . We want
to show that F (z) = 0. Because Ω is connected, there exists a path γ with the
initial point w ∈ U and the end point z. This path can be covered by finitely
many polydiscs P1, . . . , Pk, where Pi ∩ Pi+1 6= ∅ for i ∈ {1, . . . , k − 1}, P1 ⊂ U and
z ∈ Pk. From the previous paragraph, F |Pi

≡ 0 for every i ∈ {1, . . . , k} and also
F (z) = 0. �

The standard proof of Theorem 4 goes through multidimensional Taylor se-
ries, see [JP08, Proposition 1.7.10]. Different approach, presented in the textbook
[Sch05, §1.2.2], uses convexity of polydiscs. Observe that the reduction to polydiscs
in our proof is crucial since the set (6) may not be connected in the general setting.
This issue prevents us from using the one-dimensional identity principle directly.

4. Cauchy’s integral formula for compact sets

In this section, we prove Cauchy’s integral formula for compact sets (Theorem
6) using Cauchy’s integral formula for rectangles (Theorem 5). Our exposition of
the proof follows the ideas from Remmert’s book [Rem98]. It should be noted
that much of the material presented here is irrelevant when someone knows the
general form of Cauchy’s integral representation theorem in the language of index
(or winding numbers); see, e. g., [Rud87, Theorem 10.35]. But as said, we want to
avoid this concept here.

Let R be a rectangle given by

R := {z ∈ C : a < ℜz < b, c < ℑz < d}

for real numbers a < b and c < d. The boundary of R consists of its four sides. Each
side is a chord and thus easily parametrizated by the unit interval. For instance,
the parametrization of the side [a+ ci, b+ ci] could be the map

γ : [0, 1] ∋ t 7→ (a+ ic)(1 − t) + (b+ ic)t.

Observe that when t goes from 0 to 1, then γ(t) goes from a + ci to b + ci. The
choice of parametrization the so-called orientation is given on the side. The reader
is invited to write down the parametrization of the boundary of R with a positive
(counter-clockwise) orientation.
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For the proof and historic account on Cauchy’s discovery (1831) of this milestone
in complex function theory, consult [Rem98, §7.2]. See also Chapter 6 of this book
if someone is really uncomfortable with complex integration.

Theorem 5 (Cauchy’s integral formula for rectangles). Let U ⊆ C be an open set

and R ⊂ U be a closed, positively oriented rectangle. For every f ∈ O (U) we have

1

2πi

∫

∂R

f(ζ)

ζ − z
dζ =

ß
f(z), z ∈ R,

0, z ∈ U \R.
(7)

Let us investigate what happens if we stick together two rectangles R1 and
R2 along two sides of equal length and sum integrals over these two rectangles?
The most common answer would probably be that we get the integral over “one
big” rectangle R12, since the two sides “have eliminated” each other. This really
works, which can be formally deduced by writing down integrals for all the sides of
rectangles. The formula (7) over R12 is also true for every point z0 ∈ R1∩R2∩R12.
Take a sequence {zn}∞n=1 ⊂ R1 with the limit point z0. For an arbitrary small
number ε > 0 there exists N ∈ N, such that |zn − z0| < ε for n > N . Also, positive
numbers M1 and M2 exist, such that |f(ζ)| < M1 and |(ζ − zn)(ζ − z0)| > M2 for
every ζ ∈ ∂R12. For n > N we have

∣∣∣∣f(zn)−
∫

∂R12

f(ζ)

ζ − z0
dζ

∣∣∣∣ =
∣∣∣∣
∫

∂R12

f(ζ)

ζ − zn
dζ −

∫

∂R12

f(ζ)

ζ − z0
dζ

∣∣∣∣

= |zn − z0| ·
∣∣∣∣
∫

∂R12

f(ζ)

(ζ − zn)(ζ − z0)
dζ

∣∣∣∣ <
OM1

M2
ε

where O is the length of ∂R12, the constant, of course. Because f(zn) tends to
f(z0) the conclusion follows.

Given an arbitrary compact subset K of U , the idea is to construct an open
subset P of U which contains this compact set and formula (7) is correct there.
This set P will be a union of a finite number of squares, forming “polygonal sets”
(see Figure 3). Construction with squares enables us to use Theorem 5.

Theorem 6. Let U ⊆ C be an open set and K ⊂ U a compact subset. Then there

exists an open set P such that K ⊂ P ⊂ P ⊂ U and

1

2πi

∫

∂P

f(ζ)

ζ − z
dζ =

ß
f(z), z ∈ P,
0, z ∈ U \ P (8)

for every f ∈ O (U).

Proof. The analytic machinery for the proof depends on Theorem 5 and the “con-
tinuity argument” following it. The rest is point-set topology.

BecauseK is a compact set in U , there exists ε > 0 such that for every z ∈ K the
closed disc with the center in z and the radius ε is contained in U . Take a lattice,
formed by parallels to real and imaginary axes, with the width and height ε

√
2/2.

The lattice divides the plane into an infinite number of closed squares with diagonal
ε. Because K is compact, a finite set of such squares exists, say {Q1, . . . , QM}, such
that K is contained in the interior of set ‹P , defined by

‹P :=
M⋃

i=1

Qi ⊂ U.

The set ‹P is closed in U since it is a finite union of closed subsets of U . For each
square choose those sides, if any, with the following property: for every point of

the side its every neighbourhood in U intersects ‹P and U \ ‹P . Let B be a set
containing those sides. Of course, B is not empty. By definition, union of elements
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of B, denoted by B, is a boundary of ‹P in U . Define P := ‹P \ B. Then P is
nonempty and open, since we have a disjoint union

‹P = Int ‹P ⊔B

between the interior of ‹P and B. By definition, ∂P = B.
Every squareQi equip with positive orientation. From the construction it follows

M∑

i=1

∫

∂Qi

f(ζ)

ζ − z
dζ =

∫

∂P

f(ζ)

ζ − z
dζ for every z ∈

M⋃

i=1

IntQi.

But we already know that this is true for arbitrary z ∈ P . �

K1 K2

∂P2

∂P1

U

Figure 3: Open set U ⊆ C with compact set K = K1 ∪K2 and open set P = P1 ∪P2 containing
K and having boundary ∂P1∪∂P2. Little dotted squares illustrate how the set P was constructed,
see the proof of Theorem 6.

The set P from Theorem 6 is far from being unique. Assume that we have two
such sets P1 and P2. Given a holomorphic f on U , Theorem 6 guarantees the
equality of integrals around ∂P1 and ∂P2 for values in P1 ∩ P2. But in the next
section, we are confronted by the following problem: Assume that f is defined and

holomorphic only in the open set U \K. Are integrals the same? In this case, the
integral (8) is also well-defined and represents a holomorphic function in P , but
possibly different from f because, on the contrary, with this method the extension
of f through a compact set would always exists. But this is in contradiction with
the consequence of Weierstrass’ theorem, see Exercise 1.

Equality of integrals is easy to obtain in the case of two rectangles as sets P1 and
P2. The reader is invited to work out the proof. In the same lines we could produce
a proof in the general case since sets are formed by rectangles. But rigorous proof,
which is presented below, seems to be somehow technically difficult, but still quite
elementary and natural.

In order to produce the proof, consider the compact subset

‹K := P1 ∪ P2 \ P1 ∩ P2 ⊂ U \K.

By Theorem 6, there exists an open set P3 ⊂ C such that ‹K ⊂ P3 ⊂ P 3 ⊂ U \K
and

f(z) =
1

2πi

∫

∂P3

f(ζ)

ζ − z
dζ
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for every z ∈ P3. Now take z from a nonempty open set (P1 ∩ P2) \ P 3. We have
∫

∂P1−∂P2

f(η)

η − z
dη =

∫

∂P1−∂P2

∫

∂P3

f(ζ)

2πi(ζ − η)(η − z)
dζdη

= −
∫

∂P3

Ç
1

2πi

∫

∂P1−∂P2

Å
1

η − ζ
− 1

η − z

ã
dη

å
f(ζ)

ζ − z
dζ.

Changing the order of integration is justified by the fact that the integrand is a
continuous function and we integrate around a compact set3. The values ζ are from

the boundary ∂P3. It follows that ζ ∈ U \ ‹K and therefore ζ belongs to U \P1 ∪ P2

or P1 ∩P2. In both cases, the inner integral in the above expression equals zero by
Theorem 6. We showed that

1

2πi

∫

∂P1

f(ζ)

ζ − z
dζ =

1

2πi

∫

∂P2

f(ζ)

ζ − z
dζ (9)

for every z ∈ (P1 ∩ P2) \ P 3. By the identity principle, the equality (9) holds for
all z ∈ P1 ∩ P2.

5. The proof

In this section, we finally prove Theorem 2 and, consequently, Hartogs’ extension
theorem. To begin with, let us review the assumptions of the theorem.

We have a domain Ω in Cn where n ≥ 2, and a subset A ⊂ Ω such that Ω \A is
a domain. Furthermore, there exists a number i ∈ {1, . . . , n} such that:

(1) πi (Ω) \ πi (A) is a nonempty open set4,
(2) Ai(z

′) is a compact set for every z′ ∈ πi (A),

where Ai(z
′) is the fiber (1) and πi is the projection where we omit the ith com-

ponent. From now on, this number i is fixed.

C

C
n−1

πi

πi

A

Ω
Ai(z

′

0
)

Ωi(z
′

0
)

Û(z′

0
, z′

1
)

z′

0

z′

1

z′

b

P (z′

0
)

U(z′

0
) Û(z′

0
)

Ûb(z′

b
)

Figure 4: Schematic components in the proof of Hartogs’ extension theorem.

Taking the following considerations into account, the reader is invited to examine
Figure 4. Choose an arbitrary point z′0 ∈ πi (A). By the second assumption above,

3This is a weak (and most used) version of the celebrated Fubini’s theorem. The reader can
find it, stated in the sense of measure theory, in [Rud87, Chapter 8].

4The openness is not fully guaranteed although A is a closed subset of Ω. This is because πi is
not a closed map. A possible counter-example is provided by the set A = {(z1, z2) ∈ C2 : z1z2 = 1}
in Ω = C2.
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the set Ai(z
′
0) is compact and therefore πi (Ai(z

′
0)) is also compact subset of C.

Theorem 6 guarantees the existence of an open set P (z′0) ⊂ C, such that

πi (Ai(z
′
0)) ⊂ P (z′0) ⊂ P (z′0) ⊂ πi (Ωi(z

′
0)) .

If this open set is also good for small perturbations of z′0 in Cn−1 such that the
above equation is correct, then we can define an open set

“U(z′0) :=
{
z ∈ C

n : πi (z) ∈ U(z′0), πi (z) ∈ P (z′0)
}
⊂ Ω (10)

with a neighbourhood U(z′0) of z′0 in Cn−1 where this perturbations are allowed.
The precise statement and its existence is assured by the next lemma, which has
the same purpose as Sobieszek’s lemma [Sob03, Lemma 2].

Lemma 1. For every z′0 ∈ πi (A) there exist an open set P (z′0) ⊂ C and a neigh-

borhood U(z′0) ⊂ Cn−1 of z′0 such that

πi (Ai(z
′)) ⊂ P (z′0) ⊂ P (z′0) ⊂ πi (Ωi(z

′)) (11)

for every z′ ∈ U(z′0).

Proof. We are proving by contradiction. Assume that such U(z′0) does not exist.
Then for every neighborhood V ⊂ Cn−1 of z′0 there exists z′ ∈ V , such that
πi (Ai(z

′)) 6⊂ P (z′0) or P (z′0) 6⊂ πi (Ωi(z
′)). This means that there is a sequence

{z′j}∞j=1 ⊂ Cn−1 with the limit point z′0 and the following property: for every

z′j there exist z1j ∈ πi

(
Ai(z

′
j)
)
or z2j ∈ P (z′0), such that z1j /∈ P (z′0) or z2j /∈

πi

(
Ωi(z

′
j)
)
. Since the sets πi

(
Ai(z

′
j)
)
and P (z′0) are compact for every j ∈ N, the

sequences {z1j} and {z2j} have accumulation points in the latter sets. Therefore,
we can assume that both sequences converge to z1 ∈ πi (Ai(z

′
0)) ⊂ P (z′0) and z2 ∈

P (z′0) ⊂ πi (Ωi(z
′
0)), respectively. Since the set P (z′0) is open and {z1j} 6⊂ P (z′0),

the limit point z1 does not belong to P (z′0). For the same reason, we must have
z2 /∈ πi (Ωi(z

′
0)). We reached a contradiction since it has been assumed that such

U(z′0) is nonexistent. �

Thanks to Lemma 1, we know now for certain that such “U(z′0) exists. Before
continuing with proof, let introduce an open set

“U(z′1, z
′
2) := “U(z′1) ∩ “U(z′2)

for arbitrary points z′1, z
′
2 ∈ πi (A). This set is nonempty if and only if U(z′1) and

U(z′2) have nonempty intersection and we can always choose such two points that
this happens.

Let f be a given holomorphic function on Ω \ A. Again by Lemma 1, we can

define the function fz′

0
: “U(z′0) → C by

fz′

0
(z) :=

1

2πi

∫

∂P (z′

0
)

f
(
πi (z) , ζ

)

ζ − πi (z)
dζ. (12)

The same argument as in Section 2 implies holomorphicity of fz′

0
on “U(z′0). You

can guess now that the thread of the proof is using functions (12) to achieve the
following three assertions:

(1) construction of a neighborhood U of A in Ω and,
(2) construction of a holomorphic function on U such that,
(3) it coincides with f on U \A.

It is evident that such a function will be an extension of f to whole domain Ω and
by the identity principle (Theorem 4) this extension is unique. Thus proving above
assertions will provide the proof of Theorem 2.
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Neighborhood U of A consists of sets (10). Precisely, U is a union of sets “U(z′)
for all z′ ∈ πi (A).

The second assertion will be complete if functions (12) have “gluing property”.

This means that fz′

1
and fz′

2
coincide on “U(z′1, z

′
2) for arbitrary points z′1 and z′2

from πi (A). To see this, take arbitrary z ∈ “U(z′1, z
′
2) and define z′ := πi (z). Then

πi (Ai(z
′)) ⊂ P (z′1) ∩ P (z′2).

We have a compact set, contained in two “polygonal sets”, situation already dis-
cussed at the end of Section 4. By (9), this means that fz′

1
(z) = fz′

2
(z).

The third assertion is the most difficult one to show but it is the most important
one, too. The reader is again invited to examine Figure 4. Choose arbitrary point

z′b from the boundary of πi (A) in πi (Ω) and define the open subset “U b(z′b) of
“U(z′b)

by
“U b(z′b) :=

{
z ∈ C

n : πi (z) ∈ U(z′b) \ πi (A) , πi (z) ∈ P (z′b)
}
.

By the first assumption of Theorem 2, this set is nonempty. Crucial point here is
that this set is contained in the complement of A in Ω. Remember that here we
have function f , fully available to use Theorem 6 on it to obtain coincidence of f

and fz′

b

on “U b(z′b). By the identity principle, functions f and fz′

b

also coincide on

“U(z′b) \A. The proof of the third assertion will be complete if we demonstrate this
property for all points in πi (A) rather than just for boundary points.

Take arbitrary z′ ∈ πi (A). Then there exists z′b from the boundary of πi (A)
in πi (Ω), and path γ : [0, 1] → πi (A) with the initial point z′ and the end point
z′b. We now proceed as in the proof of the identity theorem, see Section 3. Choose
points z′1, . . . , z

′
k−1 ∈ γ([0, 1]) such that the set

{
U(z′ = z′0), U(z′1), . . . , U(z′k−1), U(z′b = z′k)

}

covers this path. Then “U(z′j , z
′
j+1) \ A is for every j ∈ {0, . . . , k − 1} a nonempty

open subset of Ω \A. We know from the previous two paragraphs that

f ≡ fz′

k

and fz′

k

≡ fz′

k−1

on “U(z′k−1, z
′
k) \A.

By the identity principle, functions f and fz′

k−1

coincide on “U(z′k−1) \ A. By

continuing this process, we finally get to the point z′0 = z′ and the proof is complete.
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